Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2007
versions View all 2 versions

Molecular characterization of the genetic lesion in Dystonia musculorum (dt-Alb) mice

Authors: Dmitry, Goryunov; Adijat, Adebola; Julius J, Jefferson; Conrad L, Leung; Anne, Messer; Ronald K H, Liem;

Molecular characterization of the genetic lesion in Dystonia musculorum (dt-Alb) mice

Abstract

Dystonia musculorum (dt) is an inherited autosomal recessive neuropathy in mice. Homozygous animals display primarily sensory neurodegeneration resulting in a severe loss of coordination. Several dt strains exist, including spontaneous mutants dt-Alb (Albany), dt-J (Jackson Labs), and dt-Frk (Frankel), and a transgene insertion mutant, Tg4. They contain mutations in the gene encoding Bullous Pemphigoid Antigen 1 (BPAG1), or dystonin. BPAG1 is a member of the plakin family of cytolinker proteins. BPAG1 is alternatively spliced to produce several isoforms, including the major brain-specific isoform, BPAG1a. The neurological phenotype observed in dt-Alb mice is thought to result from the absence of BPAG1a protein in the developing nervous system. The goal of this study was to determine the precise molecular nature of the dt-Alb mutation and examine residual BPAG1 expression in homozygous dt-Alb mice. A combination of molecular biological strategies revealed that the dt-Alb lesion is a deletion-insertion eliminating a large part of the coding region of BPAG1a. The molecular lesion in the dt-Alb BPAG1 allele is expected to render it completely non-functional. Although transcripts corresponding to BPAG1 segments still remaining in homozygous dt-Alb mice could be detected by RT-PCR, there was no positive signal for BPAG1 in the brain of dt-Alb mice by Northern blotting. Western blotting with polyclonal anti-BPAG1 antibodies confirmed the absence of functional BPAG1 protein (full-length or truncated) in the dt-Alb brain. Our identification of the 5' junction of the dt-Alb insertion makes it possible to genotype dt-Alb animals by standard PCR.

Related Organizations
Keywords

Genotype, Dystonin, Reverse Transcriptase Polymerase Chain Reaction, Brain, Gene Expression, Mice, Transgenic, Nerve Tissue Proteins, Cytoskeletal Proteins, Mice, Mice, Neurologic Mutants, Phenotype, Mutation, Animals, RNA, Messenger, Carrier Proteins, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%