Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Plantarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Plant
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Plant
Article . 2013
versions View all 3 versions

Requirement and Functional Redundancy of Ib Subgroup bHLH Proteins for Iron Deficiency Responses and Uptake in Arabidopsis thaliana

Authors: Wang, Ning; Cui, Yan; Liu, Yi; Fan, Huajie; Du, Juan; Huang, Zongan; Yuan, Youxi; +2 Authors

Requirement and Functional Redundancy of Ib Subgroup bHLH Proteins for Iron Deficiency Responses and Uptake in Arabidopsis thaliana

Abstract

The Ib subgroup of the bHLH gene family in Arabidopsis contains four members (AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101). AtbHLH38 and AtbHLH39 were previously confirmed to interact with FER-like iron deficiency induced transcription factor (FIT), directly functioning in activation of the expression of ferric-chelate reductase FRO2 and high-affinity ferrous iron transporter IRT1. In this work, we characterized the functions of AtbHLH100 and AtbHLH101 in the regulation of the iron-deficiency responses and uptake. Yeast two-hybrid analysis and bimolecular fluorescence complementation assay demonstrated that both AtbHLH100 and AtbHLH101 could interact with FIT. Dual expression of either AtbHLH100 or AtbHLH101 with FIT in yeast cells activated the GUS expression driven by promoters of FRO2 and IRT1. The plants overexpressing FIT together with AtbHLH101 showed constitutive expression of FRO2 and IRT1 in roots, and accumulated more iron in shoots. Further, the single, double, and triple knockout mutants of AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101 were generated and characterized. The FRO2 and IRT1 expression in roots and the iron content in shoots were more drastically decreased in the triple knockout mutant of AtbHLH39, AtbHLH100, and AtbHLH101 than that of the other available double and triple mutants of the four genes. Comparison of the physiological responses as well as the expression of FRO2 and IRT1 in the multiple knockout mutants under iron deficiency revealed that AtbHLH100, AtbHLH38, AtbHLH101, and AtbHLH39 played the gradually increased important role in the iron-deficiency responses and uptake. Taken all together, we conclude that the four Ib subgroup bHLH proteins are required and possess redundant functions with differential significance for activation of iron-deficiency responses and uptake in Arabidopsis.

Keywords

Arabidopsis Proteins, Arabidopsis, Biological Transport, Plant Science, Iron Deficiencies, Gene Knockout Techniques, Basic Helix-Loop-Helix Transcription Factors, Homeostasis, Promoter Regions, Genetic, Molecular Biology, Plant Shoots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    308
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
308
Top 1%
Top 10%
Top 1%
hybrid