Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Gsk3β is required in the epithelium for palatal elevation in mice

Authors: Lu Li; Ying Wang; Christopher J. Phiel; Christopher J. Phiel; Wei Xiong; YiPing Chen; Fenglei He; +1 Authors

Gsk3β is required in the epithelium for palatal elevation in mice

Abstract

AbstractIn Wnt/β‐catenin signaling pathway, Gsk3β functions to facilitate β‐catenin degradation. Inactivation of Gsk3β in mice causes a cleft palate formation, suggesting an involvement of Wnt/β‐catenin signaling during palatogenesis. In this study, we have investigated the expression pattern, tissue‐specific requirement and function of Gsk3β during mouse palatogenesis. We showed that Gsk3β is primarily expressed in the palatal epithelium, particularly in the medial edge epithelium overlapping with β‐catenin. Tissue‐specific gene inactivation studies demonstrated an essential role for Gsk3β in the epithelium for palate elevation, and disruption of which contributes to cleft palate phenotype in Gsk3β mutant. We observed that expression of Aixn2, a direct target gene of Wnt/β‐catenin signaling, is ectopically activated in the mutant tongue, but not in the palate. Our results indicate that Gsk3β is an intrinsic regulator required in the epithelium for palate elevation, and could act through a pathway independent of Wnt/β‐catenin signaling to regulate palate development. Developmental Dynamics 239:3235–3246, 2010. © 2010 Wiley‐Liss, Inc.

Keywords

Male, Mice, Knockout, Glycogen Synthase Kinase 3 beta, Palate, Epithelium, Cleft Palate, Wnt Proteins, Glycogen Synthase Kinase 3, Mice, Organ Culture Techniques, In Situ Nick-End Labeling, Animals, In Situ Hybridization, beta Catenin, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
bronze