Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1994 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor.

Authors: D S, Middlemas; J, Meisenhelder; T, Hunter;

Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor.

Abstract

The TrkB receptor protein-tyrosine kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. In response to brain-derived neurotrophic factor and neurotrophin-3 treatment, TrkB expressed exogenously in Rat-2 cells is rapidly phosphorylated on tyrosine residues. At least 2 regions of TrkB contain phosphorylated tyrosines. The major sites of autophosphorylation are in the region containing Tyr-670, Tyr-674, and Tyr-675, which lies in the kinase domain and corresponds by sequence homology to the Tyr-416 autophosphorylation site in p60c-Src. Tyr-785, which lies just to the COOH-terminal side of the kinase domain in a relatively short tail characteristic of the Trk family of protein-tyrosine kinase receptors, is also phosphorylated in response to neurotrophin-3 treatment. The sequence around Tyr-785 fits a consensus sequence for binding phospholipase C-gamma 1. The simplest interpretation of these results is that, in response to neurotrophin binding, at least two and perhaps all three of the tyrosines in the Tyr-670/674/675 region are autophosphorylated independently, and Tyr-785 is autophosphorylated in vivo. Following activation of TrkB, phospholipase C-gamma 1 is phosphorylated on Tyr-783, Tyr-771, and Tyr-1254. Phospholipase C-gamma 1 also forms a complex with TrkB in response to neurotrophin-3 treatment, consistent with the possibility that one of the TrkB autophosphorylation sites provides a binding site for the phospholipase C-gamma 1 SH2 domains, as is the case for other receptor protein-tyrosine kinases. We conclude that phospholipase C-gamma 1 is directly phosphorylated by TrkB. Since phosphorylation of Tyr-783 and Tyr-1254 results in activation of phospholipase C-gamma 1, we predict that neurotrophin-3 leads to activation of phospholipase C-gamma 1 following binding to TrkB in Rat-2 cells.

Related Organizations
Keywords

Phosphopeptides, Molecular Sequence Data, Gene Expression, Receptor Protein-Tyrosine Kinases, Nerve Tissue Proteins, Receptors, Nerve Growth Factor, Transfection, Peptide Mapping, Peptide Fragments, Cell Line, Rats, Substrate Specificity, Isoenzymes, Neurotrophin 3, Animals, Receptor, trkB, Trypsin, Amino Acid Sequence, Nerve Growth Factors, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 10%
gold