Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana

Authors: Hongbo, Gao; Federica, Brandizzi; Christoph, Benning; Robert M, Larkin;

A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana

Abstract

In plants, heat stress responses are controlled by heat stress transcription factors that are conserved among all eukaryotes and can be constitutively expressed or induced by heat. Heat-inducible transcription factors that are distinct from the “classical” heat stress transcription factors have also been reported to contribute to heat tolerance. Here, we show that bZIP28 , a gene encoding a putative membrane-tethered transcription factor, is up-regulated in response to heat and that a bZIP28 null mutant has a striking heat-sensitive phenotype. The heat-inducible expression of genes that encode BiP2, an endoplasmic reticulum (ER) chaperone, and HSP26.5-P, a small heat shock protein, is attenuated in the bZIP28 null mutant. An estradiol-inducible bZIP28 transgene induces a variety of heat and ER stress-inducible genes. Moreover, heat stress appears to induce the proteolytic release of the predicted transcription factor domain of bZIP28 from the ER membrane, thereby causing its redistribution to the nucleus. These findings indicate that bZIP28 is an essential component of a membrane-tethered transcription factor–based signaling pathway that contributes to heat tolerance.

Related Organizations
Keywords

Basic-Leucine Zipper Transcription Factors, Hot Temperature, Arabidopsis Proteins, Mutation, Arabidopsis, Plants, Genetically Modified, Heat-Shock Response, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    246
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
246
Top 1%
Top 10%
Top 10%
bronze