Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Membr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Membrane Biology
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve

Authors: Mentor, Sopjani; Anja, Kunert; Kamil, Czarkowski; Fabian, Klaus; Jörg, Laufer; Michael, Föller; Florian, Lang;

Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve

Abstract

The serum- and glucocorticoid-inducible kinase SGK1 and the protein kinase PKB/Akt presumably phosphorylate and, by this means, activate the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3), which has in turn been shown to regulate transporters and channels. SGK1-regulated channels include the Ca(2+) channel TRPV6, which is expressed in a variety of epithelial and nonepithelial cells including tumor cells. SGK1 and protein kinase B PKB/Akt foster tumor growth. The present study thus explored whether TRPV6 is regulated by PIKfyve. TRPV6 was expressed in Xenopus laevis oocytes with or without additional coexpression of constitutively active (S422D)SGK1, constitutively active (T308D,S473D)PKB, wild-type PIKfyve, and (S318A)PIKfyve lacking the SGK1 phosphorylation site. TRPV6 activity was determined from the current (I(Ca)) resulting from TRPV6-induced Ca(2+) entry and subsequent activation of Ca(2+)-sensitive endogenous Cl(-) channels. TRPV6 protein abundance in the cell membrane was determined utilizing immunohistochemistry and Western blotting. In TRPV6-expressing oocytes I(H) was increased by coexpression of (S422D)SGK1 and by (T308D,S473D)PKB. Coexpression of wild-type PIKfyve further increased I(H) in TRPV6 + (S422D)SGK1-expressing oocytes but did not significantly modify I(Ca) in oocytes expressing TRPV6 alone. (S318A)PIKfyve failed to significantly modify I(Ca) in the presence and absence of (S422D)SGK1. (S422D)SGK1 increased the TRPV6 protein abundance in the cell membrane, an effect augmented by additional expression of wild-type PIKfyve. We conclude that PIKfyve participates in the regulation of TRPV6.

Keywords

Analysis of Variance, Xenopus, Blotting, Western, Cell Membrane, TRPV Cation Channels, Protein Serine-Threonine Kinases, Immunohistochemistry, Models, Biological, Immediate-Early Proteins, Phosphatidylinositol 3-Kinases, Oocytes, Animals, Humans, Proto-Oncogene Proteins c-akt

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%