BRCA2 Deep Intronic Mutation Causing Activation of a Cryptic Exon: Opening toward a New Preventive Therapeutic Strategy
pmid: 22753590
BRCA2 Deep Intronic Mutation Causing Activation of a Cryptic Exon: Opening toward a New Preventive Therapeutic Strategy
Abstract Purpose: Diagnostic screening of the BRCA1/2 genes in breast cancer families is mostly done on genomic DNA. For families with a very strong family history and no mutation identified in the coding sequences or the exon–intron boundaries, BRCA1/2 transcripts' analysis is an efficient approach to uncover gene inversion and pre-mRNA splicing defaults missed by conventional DNA-based protocols. Experimental Design: We analyzed RNA from patients of negative BRCA families by reverse transcriptase PCR and identified an insertion in one family that we characterized by sequencing and by using a minigene splicing assay. More than 2,000 additional BRCA1/2 negative families were subsequently screened for this mutation using a dedicated PCR approach. Results: Nine families were found to harbor a BRCA2 mutant transcript containing a 95-nucleotide cryptic exon between exons 12 and 13. This cryptic exon results from a new mutation located deep into intron 12, c.6937+594T > G, which reinforces the strength of a preexisting 5′ splice site, turning it into a perfect consensus sequence. It is systematically included in transcripts produced by the mutant allele in cells from mutation carriers or produced by a mutant splicing reporter minigene. The inclusion of the cryptic exon was prevented when we cotransfected the minigene with antisense oligonucleotides complementary to the 3′ or mutated 5′ splice sites. Conclusion: This first deep intronic BRCA mutation emphasizes the importance of analyzing RNA to provide comprehensive BRCA1/2 diagnostic tests and opens the possibility of using antisense therapy in the future as an alternative strategy for cancer prevention. Clin Cancer Res; 18(18); 4903–9. ©2012 AACR.
Ovarian Neoplasms, Genes, BRCA2, Genes, BRCA1, Breast Neoplasms, Exons, Introns, Pedigree, Alternative Splicing, [SDV.CAN] Life Sciences [q-bio]/Cancer, Cell Line, Tumor, Mutation, Humans, Female
Ovarian Neoplasms, Genes, BRCA2, Genes, BRCA1, Breast Neoplasms, Exons, Introns, Pedigree, Alternative Splicing, [SDV.CAN] Life Sciences [q-bio]/Cancer, Cell Line, Tumor, Mutation, Humans, Female
71 Research products, page 1 of 8
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
