Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2005 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2005
versions View all 2 versions

Novel Tumor-Specific Isoforms of BEHAB/Brevican Identified in Human Malignant Gliomas

Authors: Wenya Linda Bi; Russell T. Matthews; Susan Hockfield; Mariano S. Viapiano; Joseph M. Piepmeier;

Novel Tumor-Specific Isoforms of BEHAB/Brevican Identified in Human Malignant Gliomas

Abstract

Abstract Malignant gliomas are deadly brain tumors characterized by diffuse invasion into the surrounding brain tissue. Understanding the mechanisms involved in glioma invasion could lead to new therapeutic strategies. We have previously shown that BEHAB/brevican, an extracellular matrix protein in the central nervous system, plays a role in the invasive ability of gliomas. The mechanisms that underlie BEHAB/brevican function are not yet understood, due in part to the existence of several isoforms that may have different functions. Here we describe for the first time the expression of BEHAB/brevican in human brain and characterize two novel glioma-specific isoforms, B/bsia and B/bΔg, which are generated by differential glycosylation and are absent from normal adult brain and other neuropathologies. B/bsia is an oversialylated isoform expressed by about half the high- and low-grade gliomas analyzed. B/bΔg lacks most of the carbohydrates typically present on BEHAB/brevican and is the major up-regulated isoform of this protein in high-grade gliomas but is absent in a specific subset of low-grade, indolent oligodendrogliomas. B/bΔg is detected on the extracellular surface, where it binds to the membrane by a mechanism distinct from the other BEHAB/brevican isoforms. The glioma-specific expression of B/bΔg, its restricted membrane localization, and its expression in all high-grade gliomas tested to date suggest that it may play a significant role in glioma progression and make it an important new potential therapeutic target. In addition, its absence from benign gliomas prompts its use as a diagnostic marker to distinguish primary brain tumors of similar histology but different pathologic course.

Related Organizations
Keywords

Adult, Male, Glycosylation, Adolescent, Brain Neoplasms, Cell Membrane, Nerve Tissue Proteins, Glioma, Middle Aged, Transfection, Rats, Chondroitin Sulfate Proteoglycans, Animals, Humans, Protein Isoforms, Female, Lectins, C-Type, Carrier Proteins, Brevican

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
bronze