Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1982 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1982
versions View all 2 versions

Defects in modification of cytoplasmic and mitochondrial transfer RNAs are caused by single nuclear mutations

Authors: A K, Hopper; A H, Furukawa; H D, Pham; N C, Martin;

Defects in modification of cytoplasmic and mitochondrial transfer RNAs are caused by single nuclear mutations

Abstract

Many nucleus-encoded mitochondrial enzymes differ in physical and chemical properties from analogous cytoplasmic enzymes, and it is therefore generally assumed that different genes encode analogous mitochondrial and cytoplasmic enzymes. However, our genetic studies show that for at least two different tRNA modifications, mutations in nuclear genes affect cytoplasmic as well as mitochondrial tRNAs. These studies utilize two yeast genes: TRM1 and TRM2. trm1 cells do not have the enzyme activity necessary to methylate guanosine to N2,N2-dimethylguanosine. trm2 is a new mutation that we describe here. trm2 cells are deficient in tRNA-(uridine-5)methyltransferase, and hence contain tRNA lacking 5-methyluridine or ribothymidine. Other than lacking 5-methyluridine trm2 cells have no obvious physiological defect. These studies also show that the N2,N2-dimethylguanosine and 5-methyluridine modifications are not added to tRNA in an obligatory order, and that 5-methyluridine is not required for removal of intervening sequences from precursor tRNA.

Keywords

Cell Nucleus, Cytoplasm, tRNA Methyltransferases, Guanosine, RNA, Transfer, Yeasts, Mutation, Methylation, Uridine, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%