Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Genetics
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Current Genetics
Article . 2002
versions View all 2 versions

A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae

Authors: P, Ververidis; F, Davrazou; G, Diallinas; D, Georgakopoulos; A K, Kanellis; N, Panopoulos;

A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae

Abstract

Phytopathogenic Cercospora species produce cercosporin, a photoactivated perylenequinone toxin that belongs to a family of photosensitizers which absorb light energy and produce extremely cytotoxic, reactive oxygen species. In this work, we used Saccharomyces cerevisiae as a model system for the identification and cloning of genes whose products mediate cercosporin detoxification. Two genesexpressed in high-copy number vectors conferred cercosporin resistance to an otherwise sensitive strain. One gene codes for Snq2p, a well-characterized multidrug, ABC-type, efflux protein. The other, designated CPD1 (Cercosporin Photosensitizer Detoxification), encodes a novel protein with significant similarity to the FAD-dependent pyridine nucleotide reductases. We showed that over-expression of either of these proteins can also mediate resistance to other singlet oxygen-generating compounds. The involvement of Snq2p and Cpd1p in photosensitizer detoxification reinforces previous observations which suggested that singlet oxygen acts on membrane lipids and that cellular resistance to cercosporin is mediated by a mechanism involving toxin efflux and/or toxin reduction.

Keywords

Photosensitizing Agents, Saccharomyces cerevisiae Proteins, Base Sequence, Singlet Oxygen, Genes, Fungal, Genetic Vectors, Molecular Sequence Data, Gene Expression, Drug Resistance, Microbial, Saccharomyces cerevisiae, Protein Structure, Tertiary, Fungal Proteins, Transformation, Genetic, Escherichia coli, ATP-Binding Cassette Transporters, NADH, NADPH Oxidoreductases, Amino Acid Sequence, Perylene, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%