Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2005
versions View all 4 versions

Light Activation, Adaptation, and Cell Survival Functions of the Na+/Ca2+ Exchanger CalX

Authors: Craig Montell; Hong Xu; Roger C. Hardie; Yuchun Gu; Johannes Oberwinkler; Johannes Oberwinkler; Tao Wang;

Light Activation, Adaptation, and Cell Survival Functions of the Na+/Ca2+ Exchanger CalX

Abstract

In sensory neurons, Ca(2+) entry is crucial for both activation and subsequent attenuation of signaling. Influx of Ca(2+) is counterbalanced by Ca(2+) extrusion, and Na(+)/Ca(2+) exchange is the primary mode for rapid Ca(2+) removal during and after sensory stimulation. However, the consequences on sensory signaling resulting from mutations in Na(+)/Ca(2+) exchangers have not been described. Here, we report that mutations in the Drosophila Na(+)/Ca(2+) exchanger calx have a profound effect on activity-dependent survival of photoreceptor cells. Loss of CalX activity resulted in a transient response to light, a dramatic decrease in signal amplification, and unusually rapid adaptation. Conversely, overexpression of CalX had reciprocal effects and greatly suppressed the retinal degeneration caused by constitutive activity of the TRP channel. These results illustrate the critical role of Ca(2+) for proper signaling and provide genetic evidence that Ca(2+) overload is responsible for a form of retinal degeneration resulting from defects in the TRP channel.

Keywords

Patch-Clamp Techniques, Adaptation, Ocular, Cell Survival, Neuroscience(all), Retinal Degeneration, Sodium, Down-Regulation, Antiporters, Drosophila melanogaster, Microscopy, Electron, Transmission, Mutation, Nerve Degeneration, Animals, Drosophila Proteins, Calcium, Photoreceptor Cells, Invertebrate, Calcium Channels, Calcium Signaling, Vision, Ocular, TRPC Cation Channels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 1%
hybrid