Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Functional Regulation of Tissue Plasminogen Activator on the Surface of Vascular Smooth Muscle Cells by the Type-II Transmembrane Protein p63 (CKAP4)

Authors: Razzaq, Tahir M.; Bass, Rosemary; Vines, David J.; Werner, Finn; Whawell, Simon A.; Ellis, Vincent;

Functional Regulation of Tissue Plasminogen Activator on the Surface of Vascular Smooth Muscle Cells by the Type-II Transmembrane Protein p63 (CKAP4)

Abstract

We have demonstrated that tissue plasminogen activator (tPA) binds specifically to human vascular smooth muscle cells (VSMC) in a functionally relevant manner, both increasing plasminogen activation and decreasing tPA inhibition (Ellis, V., and Whawell, S. A. (1997) Blood 90, 2312-2322; Werner, F., Razzaq, T. M., and Ellis, V. (1999) J. Biol. Chem. 274, 21555-21561). To further understand this system we have now identified and characterized the protein responsible for this binding. Rat VSMC were surface-labeled with 125I, and cell lysates were subjected to an affinity chromatography scheme based on the previously identified tPA binding characteristics. A single radiolabeled protein of 63 kDa bound specifically and was eluted at low pH. This protein was isolated from large scale preparations of VSMC and unambiguously identified as the rat homologue of the human type-II transmembrane protein p63 (CKAP4) by matrix-assisted laser desorption ionization and nano-electrospray tandem mass spectrometry of tryptic fragments. In confirmation of this, a monoclonal antibody raised against authentic human p63 recognized the isolated protein in Western blotting. Immunofluorescence microscopy demonstrated that p63 was located principally in the endoplasmic reticulum but was also detected in significant quantities on the surface of human VSMC. In support of the hypothesis that p63 is the functional tPA binding site on VSMC, an anti-p63 monoclonal antibody was found to block tPA binding. Furthermore, heterologous expression of an N-terminally truncated mutant of p63, which targets exclusively to the plasma membrane, led to an increase in tPA-catalyzed plasminogen activation. Therefore, p63 on the surface of VSMC may contribute to the functional regulation of the plasminogen activation system in the vessel wall.

Country
United Kingdom
Related Organizations
Keywords

572, Antibodies, Monoclonal, Membrane Proteins, Plasminogen, Endoplasmic Reticulum, Mass Spectrometry, Muscle, Smooth, Vascular, Rats, Tissue Plasminogen Activator, 616, Mutation, Animals, Humans, Aorta, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Average
gold