Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Yeastarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Yeast
Article . 2001
versions View all 3 versions

Gene disruption and basic phenotypic analysis of nine novel yeast genes from chromosome XIV

Authors: C, Capozzo; F, Sartorello; F, Dal Pero; M, D'Angelo; A, Vezzi; S, Campanaro; G, Valle;

Gene disruption and basic phenotypic analysis of nine novel yeast genes from chromosome XIV

Abstract

In this work, we describe the disruption of nine ORFs of S. cerevisiae (YNL123w, YNL119w, YNL115c, YNL108c, YNL110c, YNL124w, YNL233w, YNL232w and YNL231c) in two genetic backgrounds: FY1679 and CEN.PK2. For the construction of the deletant strains, we used the strategy of short flanking homology (SFH) PCR. The SFH-deletion cassette was made by PCR amplification of the KanMX4 module with primers containing a 5' region of 40 bases homologous to the target yeast gene and with a 3' region of 20 bases homologous to pFA6a-KanMX4 MCS. Sporulation and tetrad analysis of heterozygous deletants revealed that YNL110c, YNL124w and YNL232w are essential genes. The subcellular localization of the protein encoded by the essential gene YNL110c was investigated using the green fluorescent protein (GFP) approach, revealing a nuclear pattern. Basic phenotypic analysis of the non-essential genes revealed that the growth of ynl119w delta haploid cells was severely affected at 37 degrees C in N3 medium, indicating that this gene is required at high temperatures with glycerol as a non-fermentable substrate. The ynl233w delta haploid cells also showed a particular phenotype under light microscopy and were studied in detail in a separate work.

Related Organizations
Keywords

Mutagenesis, Insertional, Open Reading Frames, Microscopy, Confocal, Phenotype, Sequence Homology, Nucleic Acid, Genes, Fungal, Saccharomyces cerevisiae, Chromosomes, Fungal, Polymerase Chain Reaction, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%