Herg K+ Channel-Dependent Apoptosis and Cell Cycle Arrest in Human Glioblastoma Cells
Herg K+ Channel-Dependent Apoptosis and Cell Cycle Arrest in Human Glioblastoma Cells
Glioblastoma (GB) is associated with poor patient survival owing to uncontrolled tumor proliferation and resistance to apoptosis. Human ether-a-go-go-related gene K(+) channels (hERG; Kv11.1, KCNH2) are expressed in multiple cancer cells including GB and control cell proliferation and death. We hypothesized that pharmacological targeting of hERG protein would inhibit tumor growth by inducing apoptosis of GB cells. The small molecule hERG ligand doxazosin induced concentration-dependent apoptosis of human LNT-229 (EC50 = 35 µM) and U87MG (EC50 = 29 µM) GB cells, accompanied by cell cycle arrest in the G0/G1 phase. Apoptosis was associated with 64% reduction of hERG protein. HERG suppression via siRNA-mediated knock down mimicked pro-apoptotic effects of doxazosin. Antagonism of doxazosin binding by the non-apoptotic hERG ligand terazosin resulted in rescue of protein expression and in increased survival of GB cells. At the molecular level doxazosin-dependent apoptosis was characterized by activation of pro-apoptotic factors (phospho-erythropoietin-producing human hepatocellular carcinoma receptor tyrosine kinase A2, phospho-p38 mitogen-activated protein kinase, growth arrest and DNA damage inducible gene 153, cleaved caspases 9, 7, and 3), and by inactivation of anti-apoptotic poly-ADP-ribose-polymerase, respectively. In summary, this work identifies doxazosin as small molecule compound that promotes apoptosis and exerts anti-proliferative effects in human GB cells. Suppression of hERG protein is a crucial molecular event in GB cell apoptosis. Doxazosin and future derivatives are proposed as novel options for more effective GB treatment.
- University Hospital Heidelberg Germany
- German Cancer Research Center Germany
ERG1 Potassium Channel, Science, Apoptosis, Resting Phase, Cell Cycle, Cell Line, Tumor, Humans, RNA, Small Interfering, Brain Neoplasms, Q, Doxazosin, R, Desipramine, G1 Phase, Cell Cycle Checkpoints, Caspase 9, Ether-A-Go-Go Potassium Channels, Enzyme Activation, Cytoprotection, Gene Knockdown Techniques, Medicine, Glioblastoma, Research Article, Signal Transduction
ERG1 Potassium Channel, Science, Apoptosis, Resting Phase, Cell Cycle, Cell Line, Tumor, Humans, RNA, Small Interfering, Brain Neoplasms, Q, Doxazosin, R, Desipramine, G1 Phase, Cell Cycle Checkpoints, Caspase 9, Ether-A-Go-Go Potassium Channels, Enzyme Activation, Cytoprotection, Gene Knockdown Techniques, Medicine, Glioblastoma, Research Article, Signal Transduction
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
