Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Cell Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Cell Physiology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation

Authors: Hasseri Halim; Pimuma Rungtabnapa; Ubonthip Nimmannit; Yon Rojanasakul; Pithi Chanvorachote;

Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation

Abstract

Anoikis or detachment-induced apoptosis plays an essential role in the regulation of cancer cell metastasis. Caveolin-1 (Cav-1) is a key protein involved in tumor metastasis, but its role in anoikis and its regulation during cell detachment are unclear. We report here that Cav-1 plays a key role as a negative regulator of anoikis through a reactive oxygen species (ROS)-dependent mechanism in human lung carcinoma H460 cells. During cell detachment, Cav-1 is downregulated, whereas ROS generation is upregulated. Hydrogen peroxide and hydroxyl radical are two key ROS produced by cells during detachment. Treatment of the cells with hydrogen peroxide scavengers, catalase and N-acetylcysteine, promoted Cav-1 downregulation and anoikis during cell detachment, indicating that produced hydrogen peroxide plays a primary role in preventing anoikis by stabilizing Cav-1 protein. Catalase and N-acetylcysteine promoted ubiquitination and proteasomal degradation of Cav-1, which is a major pathway of its downregulation during cell anoikis. Furthermore, addition of hydrogen peroxide exogenously to the cells inhibited Cav-1 downregulation by preventing the formation of Cav-1-ubiquitin complex, supporting the inhibitory role of endogenous hydrogen peroxide in Cav-1 degradation during cell detachment. Together, these results indicate a novel role of hydrogen peroxide as an endogenous suppressor of cell anoikis through its stabilizing effect on Cav-1.

Keywords

Proteasome Endopeptidase Complex, Lung Neoplasms, Caveolin 1, Ubiquitination, Down-Regulation, Free Radical Scavengers, Hydrogen Peroxide, Anoikis, Catalase, Acetylcysteine, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research