Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genetic Epidemiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetic Epidemiology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Identifying a Deletion Affecting Total Lung Capacity Among Subjects in the COPDGene Study Cohort

Authors: Ferdouse, Begum; Ingo, Ruczinski; Shengchao, Li; Edwin K, Silverman; Michael H, Cho; David A, Lynch; Douglas, Curran-Everett; +5 Authors

Identifying a Deletion Affecting Total Lung Capacity Among Subjects in the COPDGene Study Cohort

Abstract

ABSTRACTChronic obstructive pulmonary disease (COPD) is a progressive disease with both environmental and genetic risk factors. Genome‐wide association studies (GWAS) have identified multiple genomic regions influencing risk of COPD. To thoroughly investigate the genetic etiology of COPD, however, it is also important to explore the role of copy number variants (CNVs) because the presence of structural variants can alter gene expression and can be causal for some diseases. Here, we investigated effects of polymorphic CNVs on quantitative measures of pulmonary function and chest computed tomography (CT) phenotypes among subjects enrolled in COPDGene, a multisite study. COPDGene subjects consist of roughly one‐third African American (AA) and two‐thirds non‐Hispanic white adult smokers (with or without COPD). We estimated CNVs using PennCNV on 9,076 COPDGene subjects using Illumina's Omni‐Express genome‐wide marker array. We tested for association between polymorphic CNV components (defined as disjoint intervals of copy number regions) for several quantitative phenotypes associated with COPD within each racial group. Among the AAs, we identified a polymorphic CNV on chromosome 5q35.2 located between two genes (FAM153B and SIMK1, but also harboring several pseudo‐genes) giving genome‐wide significance in tests of association with total lung capacity (TLCCT) as measured by chest CT scans. This is the first study of genome‐wide association tests of polymorphic CNVs and TLCCT. Although the ARIC cohort did not have the phenotype of TLCCT, we found similar counts of CNV deletions and amplifications among AA and European subjects in this second cohort.

Keywords

Male, DNA Copy Number Variations, Smoking, Total Lung Capacity, Middle Aged, Markov Chains, White People, Black or African American, Cohort Studies, Pulmonary Disease, Chronic Obstructive, Chromosomes, Human, Pair 5, Humans, Female, Genetic Predisposition to Disease, Chromosome Deletion, Biomarkers, Aged, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze