Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Pharmacology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The role of caveolin1 and sprouty1 in genistein's regulation of vascular smooth muscle cell and endothelial cell proliferation

Authors: QiuLing, Xiang; GuiPing, Lin; JinWen, Xu; ShuHui, Zheng; SiJuan, Chen; KeWen, Zhou; TingHuai, Wang;

The role of caveolin1 and sprouty1 in genistein's regulation of vascular smooth muscle cell and endothelial cell proliferation

Abstract

Genistein prevents atherosclerosis by exerting protective effects on blood vessels. The aim of this study is to investigate the role of caveolin1 and sprouty1 in the regulation of proliferation of vascular smooth muscle cell (VSMC) and endothelial cell by genistein. Using thiazolyl blue tetrazolium bromide(MTT) and [3H]-TdR assay, we found genistein inhibited angiotensin II-induced proliferation in primary cultured VSMC while it stimulated proliferation of quiescent endothelial cells. The effects were attenuated by caveolin1 or sprouty1 siRNA. Western blot analysis indicated that genistein attenuated the phosphorylation of extracellular regulated kinase1/2(ERK1/2) in angiotensin II-induced proliferated VSMC but stimulated the phosphorylation of ERK1/2 in quiescent endothelial cell. Double staining immunofluorescence identified caveolin1 and sprouty1 coexpressed in the cytoplasm of both VSMC and endothelial cell. Genistein increased the expression of caveolin1, p-caveolin1 and sprouty1 in VSMC, while it had opposite effects in quiescent endothelial cell. Co-immunoprecipitation suggested that genistein exerted its effects through interaction of caveolin1 and sprouty1. Our results demonstrate that the inhibition of angiotensin II-induced proliferation of VSMC and stimulation of quiescent endothelial cell by genistein are regulated by caveolin1 and sprouty1, which are implemented through Ras/MAPK pathway.

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Angiotensin II, Caveolin 1, Endothelial Cells, Nerve Tissue Proteins, Phytoestrogens, Genistein, Gene Expression Regulation, Enzymologic, Muscle, Smooth, Vascular, Rats, Rats, Sprague-Dawley, Protein Transport, Animals, Female, Phosphorylation, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average