Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Toxicology and Appli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Toxicology and Applied Pharmacology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Breast cancer cells-derived Von Willebrand Factor promotes VEGF-A-related angiogenesis through PI3K/Akt-miR-205-5p signaling pathway

Authors: Qianying, Tao; Yingxue, Qi; Jiayi, Gu; Die, Yu; Yuxin, Lu; Jianwen, Liu; Xin, Liang;

Breast cancer cells-derived Von Willebrand Factor promotes VEGF-A-related angiogenesis through PI3K/Akt-miR-205-5p signaling pathway

Abstract

The metastasis and angiogenesis of breast cancer has always been a difficult problem for treatment. It has recently been discovered that Von Willebrand Factor (vWF), in addition to hemostasis, also plays a role in tumor metastasis and angiogenesis. We noticed that besides endothelial cells, breast cancer cells (MDA-MB-231 and MCF-7) could also express vWF. In vitro experiments showed that knocking down vWF inhibited breast cancer cell metastasis. And we found that overexpression of vWF significantly promoted VEGF-A-dependent vascular proliferation in vitro by activating the PI3K/Akt signaling pathway. Further studies indicated that inhibition of PI3K/Akt signaling pathway up-regulated the expression of miR-205-5p, and miR-205-5p could bind to the 3'UTR region of VEGF-A to hinder the production of VEGF-A. Furthermore, when a spontaneous lung metastasis model was established in Balb/c female mice, knockdown of vWF in 4 T1 cells resulted in a decrease in tumor blood vessel density and effectively inhibited lung metastasis, accompanied by a decrease in the expression level of VEGF-A and an increase in the expression level of miR-205-5p. In summary, our findings provide experimental evidence that overexpression of vWF in breast cancer cells down-regulates the expression of miR-205-5p and up-regulates the expression of VEGF-A through the PI3K/Akt signaling pathway, thereby promoting tumor angiogenesis and metastasis.

Related Organizations
Keywords

Vascular Endothelial Growth Factor A, Lung Neoplasms, Neovascularization, Pathologic, Endothelial Cells, Breast Neoplasms, Mice, MicroRNAs, Phosphatidylinositol 3-Kinases, von Willebrand Factor, Animals, Humans, Female, Proto-Oncogene Proteins c-akt, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%