Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Vascular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Vascular Surgery
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Thrombospondin-1 induces matrix metalloproteinase-2 activation in vascular smooth muscle cells1 1Competition of interest: none.

Authors: Lee, Taeseung; Esemuede, Nowokere; Sumpio, Bauer E.; Gahtan, Vivian;

Thrombospondin-1 induces matrix metalloproteinase-2 activation in vascular smooth muscle cells1 1Competition of interest: none.

Abstract

AbstractIntroduction: Thrombospondin-1 (TSP-1), an extracellular matrix (ECM) glycoprotein, is associated with a variety of cellular processes relevant to atherosclerosis and intimal hyperplasia, including vascular smooth muscle cell (VSMC) migration. Matrix metalloproteinase-2 (MMP2) is associated with basement membrane and ECM degradation, important processes for cell migration. We hypothesized that TSP-1 modulates MMP2 activity in VSMCs and is critical for VSMC migration.Methods: Quiescent bovine aortic VSMCs (48 hours) were incubated in serum-free media (SFM) with or without TSP-1 (10 or 20 μg/mL). Gelatinase activity was measured with zymography to determine pro-MMP2 and MMP2 activity. MMP2 messenger RNA expression was determined with Northern blot analysis. Invasion assays were performed. A binding assay was used to determine the specificity of TSP-1 binding to MMP2. Blots were quantified with densitometry, and all comparisons were made with a paired t test.Results: TSP-1 induced production of activated forms of MMP2, as well as upregulation of pro-MMP2. MMP2 mRNA was upregulated 1.7-fold by TSP-1 at 10 and 20 μg/mL. GM6001, an MMP inhibitor, inhibited VSMC migration across the matrix barrier, whereas migration that occurred in the absence of the matrix barrier was unaffected. With a binding assay, TSP-1 interacted physically with MMP2, and TSP-1-bound MMP2 showed the strongest binding activity in comparison with collagen I, fibronectin, and elastin.Conclusion: TSP-1 induced MMP2 activation through transcriptional and posttranslational mechanisms. These findings imply that MMP2 activation is relevant to the mechanism of TSP-1-induced VSMC migration.

Related Organizations
Keywords

Surgery, Cardiology and Cardiovascular Medicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
hybrid