Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme
Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme
We address the problem of optimizing kernel parameters in Support Vector Machine modelling, especially when the number of parameters is greater than one as in polynomial kernels and KMOD, our newly introduced kernel. The present work is an extended experimental study of the framework proposed by Chapelle et al. for optimizing SVM kernels using an analytic upper bound of the error. However, our optimization scheme minimizes an empirical error estimate using a Quasi-Newton technique. The method has shown to reduce the number of support vectors along the optimization process. In order to assess our contribution, the approach is further used for adapting KMOD, RBF and polynomial kernels on synthetic data and NIST digit image database. The method has shown satisfactory results with much faster convergence in comparison with the simple gradient descent method.Furthermore, we also experimented two more optimization schemes based respectively on the maximization of the margin and on the minimization of an approximated VC dimension estimate. While both of the objective functions are minimized, the error is not. The corresponding experimental results we carried out show this shortcoming.
- Concordia University Canada
8 Research products, page 1 of 1
- 2010IsAmongTopNSimilarDocuments
- 1977IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 1989IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
