Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1996 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Stress-Induced Binding of the Transcription Factor CHOP to a Novel DNA Control Element

Authors: Mariano Ubeda; Xiao Zhong Wang; Helene Zinszner; Irene Wu; Joel F. Habener; David Ron;

Stress-Induced Binding of the Transcription Factor CHOP to a Novel DNA Control Element

Abstract

CHOP (GADD153) is a mammalian nuclear protein that dimerizes with members of the C/EBP family of transcriptional factors. Absent under normal conditions, CHOP is induced by the stress encountered during nutrient deprivation, the acute-phase response, and treatment of cells with certain toxins. The basic region of CHOP deviates considerably in sequence from that of other C/EBP proteins, and CHOP-C/EBP heterodimers are incapable of binding to a common class of C/EBP sites. With respect to such sites, CHOP serves as an inhibitor of the activity of C/EBP proteins. However, recent studies indicate that certain functions of CHOP, such as the induction of growth arrest by overexpression of the wild-type protein and oncogenic transformation by the TLS-CHOP fusion protein, require an intact basic region, suggesting that DNA binding by CHOP may be implicated in these activities. In this study an in vitro PCR-based selection assay was used to identify sequences bound by CHOP-C/EBP dimers. These sequences were found to contain a unique core element PuPuPuTGCAAT(A/C)CCC. Competition in DNA-binding assays, DNase 1 footprint analysis, and methylation interference demonstrate that the binding is sequence specific. Deletions in the basic region of CHOP lead to a loss of DNA binding, suggesting that CHOP participates in this process. Stress induction in NIH 3T3 cells leads to the appearance of CHOP-containing DNA-binding activity. CHOP is found to contain a transcriptional activation domain which is inducible by cellular stress, lending further support to the notion that the protein can function as a positively acting transcription factor. We conclude that CHOP may serve a dual role both as an inhibitor of the ability of C/EBP proteins to activate some target genes and as a direct activator of others.

Keywords

Helix-Loop-Helix Motifs, Molecular Sequence Data, Nuclear Proteins, 3T3 Cells, Rats, DNA-Binding Proteins, Mice, CCAAT-Enhancer-Binding Protein-alpha, CCAAT-Enhancer-Binding Proteins, Trans-Activators, Animals, Deoxyribonuclease I, Amino Acid Sequence, Transcription Factor CHOP, Sequence Deletion, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    284
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
284
Top 1%
Top 1%
Top 1%
bronze