Powered by OpenAIRE graph

The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics

Authors: Iain J. McEwan; Derek N. Lavery;

The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics

Abstract

The AR (androgen receptor) is a ligand-activated transcription factor and member of the steroid receptor superfamily. The AR responds to the ligands testosterone and dihydrotestosterone and activates multiple downstream genes required in development and reproduction. During the events of transactivation, the AR makes specific protein–protein interactions with several basal transcription factors such as TBP (TATA-box-binding protein) and TFIIF (transcription factor IIF). These interactions occur predominantly within a defined region termed AF1 (activation function-1) located within the highly disordered N-terminal domain of the receptor. Our focus is on the structural aspects of AF1 and how this flexible and disordered domain generates functional interactions with regulators of transcription. Our working hypothesis is that AR-AF1 domain exhibits induced folding when contacted by transcription regulators (such as TFIIF) into a more compact and ‘active’ conformation, enabling further co-regulator recruitment and ultimately transcription. Structural flexibility and intrinsic disorder of AR-AF1 were studied using predictive algorithms and fluorescence spectroscopy under different experimental conditions and the results revealed this domain retains characteristics indicative of molten-globule or pre-molten-globule-like structures. We hypothesize that this partially folded intermediate state is important for, and enables the AF1 domain to make, multiple protein–protein interactions. The structural aspects of AR-AF1 and interactions with TFIIF are discussed.

Related Organizations
Keywords

Models, Molecular, Transcriptional Activation, Transcription Factors, TFII, Binding Sites, Protein Conformation, Receptors, Androgen, Molecular Sequence Data, Humans, Amino Acid Sequence, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Average
Top 10%