Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Structure and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Structure and Function
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Implications of p75NTR for dentate gyrus morphology and hippocampus-related behavior revisited

Authors: Dokter, Martin; Busch, Ruben; Poser, R.; Vogt, Miriam A.; Bohlen und Halbach, Viola von; Gass, Peter; Unsicker, Klaus; +1 Authors

Implications of p75NTR for dentate gyrus morphology and hippocampus-related behavior revisited

Abstract

The pan-neurotrophin receptor p75NTR is expressed in the adult brain in a discrete pattern. Although numerous studies have addressed its implications for hippocampal functions, the generated sets of data are surprisingly conflicting. We have therefore set out to re-investigate the impact of a deletion of the full-length p75NTR receptor on several parameters of the dentate gyrus (DG), including neurogenesis and hippocampus-related behavior by using p75NTR(ExIII) knockout mice. Moreover, we investigated further parameters of the DG (cholinergic innervation, dendritic spines). In addition, we analyzed on the morphological level the impact of aging by comparing adult and aged p75NTR(ExIII) mice and their age-matched littermates. Adult (4-6 months old), but not aged (20 months old), p75NTR(ExIII) knockout mice display an enhanced volume of the DG. However, adult neurogenesis within the adult DG was unaffected in both adult and aged p75NTR(ExIII) knockout mice. We could further demonstrate that the change in the volume of the DG was accompanied by an increased cholinergic innervation and increased spine densities of granule cells in adult, but not aged p75NTR deficient mice. These morphological changes in the adult p75NTR deficient mice were accompanied by specific alterations in their behavior, including altered behavior in the Morris water maze test, indicating impairments in spatial memory retention.

Keywords

Male, Mice, Knockout, Neurons, Aging, Behavior, Animal, Dendritic Spines, Neurogenesis, Receptors, Nerve Growth Factor, Motor Activity, Mice, Cholinergic Fibers, Dentate Gyrus, Animals, Maze Learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%