Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuronarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuron
Article . 1994
versions View all 2 versions

Mutations affecting the pattern of the PNS in drosophila reveal novel aspects of neuronal development

Authors: D. D'evelyn; Linus T.-Y. Tsai; Hugo J. Bellen; Adi Salzberg; Ja-Kyeong Lee; Karen L. Schulze; Dan Strumpf;

Mutations affecting the pattern of the PNS in drosophila reveal novel aspects of neuronal development

Abstract

Through a systematic genetic screen, we have identified 55 mutations that affect the development of the PNS of Drosophila embryos. These mutations specify 13 novel and 5 previously characterized genes and define new phenotypes for 2 other known genes. Five classes of mutant phenotypes were identified in the screen: gain of neurons, loss of neurons, abnormal position of chordotonal neurons, aberrant neuronal trajectories, and abnormal morphology of neurons. Phenotypic analyses of mutations identified in this study revealed three novel aspects of PNS development. First, we have identified a novel gene that may be required to define glial versus neuronal cell identity. Second, our data indicate that neuronal migration plays an important role in pattern formation in the embryonic PNS. Third, we have identified mutations that cause a lack of sensory organs, but unlike mutations in proneural genes, do not affect the formation of sensory organ precursors. These genes may be required for key aspects of neuronal differentiation. Our studies suggest that approximately 70 essential genes are required for proper PNS development in Drosophila embryos.

Related Organizations
Keywords

Neurons, Drosophila melanogaster, Mutagenesis, Peripheral Nervous System, Animals, Antibodies, Monoclonal, Chromosome Mapping

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    134
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
134
Top 10%
Top 10%
Top 1%