Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation

Authors: Ana, Petracovici; Roberto, Bonasio;

Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation

Abstract

The Polycomb repressive complex 2 (PRC2) is an essential epigenetic regulator that deposits repressive H3K27me3. PRC2 subunits form two holocomplexes-PRC2.1 and PRC2.2-but the roles of these two PRC2 assemblies during differentiation are unclear. We employed auxin-inducible degradation to deplete PRC2.1 subunit MTF2 or PRC2.2 subunit JARID2 during differentiation of embryonic stem cells (ESCs) to neural progenitors (NPCs). Depletion of either MTF2 or JARID2 resulted in incomplete differentiation due to defects in gene regulation. Distinct sets of Polycomb target genes were derepressed in the absence of MTF2 or JARID2. MTF2-sensitive genes were marked by H3K27me3 in ESCs and remained silent during differentiation, whereas JARID2-sensitive genes were preferentially active in ESCs and became newly repressed in NPCs. Thus, MTF2 and JARID2 contribute non-redundantly to Polycomb silencing, suggesting that PRC2.1 and PRC2.2 have distinct functions in maintaining and establishing, respectively, Polycomb repression during differentiation.

Keywords

Polycomb Repressive Complex 2, Gene Expression Regulation, Developmental, Polycomb-Group Proteins, Cell Differentiation, Histones, Mice, Inbred C57BL, Mice, Neural Stem Cells, Animals, Embryonic Stem Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 1%