Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Recent structural insights into transcription preinitiation complexes

Authors: E, Nogales;

Recent structural insights into transcription preinitiation complexes

Abstract

ABSTRACT Our understanding of the elaborate mechanism of gene transcription initiation in eukaryotes has been widened by recent structural information on some of the key components of the complex preinitiation transcriptional machinery. The high-resolution structures of both bacterial and eukaryotic polymerases are technical landmarks of great biological significance that have given us the first molecular insight into the mechanism of this large enzyme. While new atomic structures of different domains of general transcription factors, such as the double bromodomain of TAF250, have become available by means of X-ray crystallography and NMR studies, more global pictures of multisubunit transcription complexes, such as TFIID, TFIIH or the yeast mediator, have now been obtained by electron microscopy and image-reconstruction techniques. A combination of methodologies may prove essential for a complete structural description of the initial steps in the expression of eukaryotic genes.

Keywords

Structure-Activity Relationship, Transcription Factors, TFII, Transcription, Genetic, Transcription Factor TFIID, DNA, DNA-Directed RNA Polymerases, Transcription Factor TFIIH, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%