Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

An Abd-B Class HOX·PBX Recognition Sequence Is Required for Expression from the Mouse Ren-1 Gene

Authors: L, Pan; Y, Xie; T A, Black; C A, Jones; S C, Pruitt; K W, Gross;

An Abd-B Class HOX·PBX Recognition Sequence Is Required for Expression from the Mouse Ren-1 Gene

Abstract

Expression from the mouse Ren-1(c) gene in As4.1 cells is dependent on a proximal promoter element (PPE) located at approximately -60 and a 241-base pair enhancer region located at -2625 relative to the transcription start site. The PPE (TAATAAATCAA) is identical to a consensus HOX.PBX binding sequence. Further, PBX1b has been shown to be a component of a PPE-specific binding complex present in nuclear extracts from As4.1 cells. The binding affinities of different paralog HOX members to the PPE were examined in the absence or presence of PBX1b. HOXB6, -B7, and -C8 failed to bind the PPE alone but showed weak affinity in the presence of PBX1b. In contrast, HOXD10 and to a lesser degree HOXB9 bound the PPE with high affinities regardless of whether PBX1b was present. Abd-B HOX members, including HOXD10, -A10, -A9, -B9, and -C9, are expressed in As4.1 cells. The ability of HOX and PBX1b to form a ternary complex with PREP1 on the PPE is also demonstrated both in vivo and in vitro. Point mutations in either the HOX or PBX half-site of the PPE disrupted the formation of the HOX.PBX complex and dramatically decreased transcriptional activity of the Ren-1(c) gene demonstrating that both the HOX and PBX half-sites are critical for mouse renin gene expression. These results strongly implicate Abd-B class Hox genes and their cofactors as major determinants of the sites of renin expression.

Related Organizations
Keywords

Cell Nucleus, Homeodomain Proteins, Binding Sites, Base Sequence, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Pre-B-Cell Leukemia Transcription Factor 1, Gene Expression Regulation, Enzymologic, Cell Line, Rats, DNA-Binding Proteins, Mice, Proto-Oncogene Proteins, Sequence Homology, Nucleic Acid, Consensus Sequence, Renin, Animals, Humans, Promoter Regions, Genetic, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research