Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1016/j.neur...
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2020 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://doi.org/10.1101/838854...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury

Authors: Yung-Chih Cheng; Emmy Li; William Renthal; William Renthal; Lite Yang; Lite Yang; Lite Yang; +6 Authors

Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury

Abstract

SummaryPrimary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By transcriptionally profiling sensory ganglia at single-cell resolution, we find that different somatosensory neuronal subtypes undergo a remarkably consistent and dramatic transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. Successful axonal regeneration leads to a restoration of neuronal cell identity and the deactivation of the growth program. This injury-induced transcriptional reprogramming requires Atf3, a transcription factor which is induced rapidly after injury and is necessary for axonal regeneration and functional recovery. While Atf3 and other injury-induced transcription factors are known for their role in reprogramming cell fate, their function in mature neurons is likely to facilitate major adaptive changes in cell function in response to damaging environmental stimuli.

Keywords

Activating Transcription Factor 3, Lumbar Vertebrae, Neuronal Plasticity, Sensory Receptor Cells, Nociceptors, Axotomy, Recovery of Function, Cellular Reprogramming, Sciatic Nerve, Axons, Nerve Regeneration, Crush Injuries, Mice, Gene Expression Regulation, Peripheral Nerve Injuries, Ganglia, Spinal, Animals, Neuralgia, RNA-Seq, Mechanoreceptors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    381
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
381
Top 0.1%
Top 1%
Top 0.1%
Green
hybrid