Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo

Authors: James A. Kennedy; Dwayne L. Barber; F. Barabé; Jeremy A. Squire; B. J. Patterson; John E. Dick; J. Bayani;

Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo

Abstract

Activation of JAK2 by chromosomal translocation or point mutation is a recurrent event in hematopoietic malignancies, including acute leukemias and myeloproliferative disorders. Although the effects of activated JAK2 signaling have been examined in cell lines and murine models, the functional consequences of deregulated JAK2 in the context of human hematopoietic cells are currently unknown. Here we report that expression of TEL-JAK2, a constitutively active variant of the JAK2 kinase, in lineage-depleted human umbilical cord blood cells results in erythropoietin-independent erythroid differentiation in vitro and induces the rapid development of myelofibrosis in an in vivo NOD/SCID xenotransplantation assay. These studies provide functional evidence that activated JAK2 signaling in primitive human hematopoietic cells is sufficient to drive key processes implicated in the pathophysiology of polycythemia vera and idiopathic myelofibrosis. Furthermore, they describe an in vivo model of myelofibrosis initiated with primary cells, highlighting the utility of the NOD/SCID xenotransplant system for the development of experimental models of human hematopoietic malignancies.

Keywords

Oncogene Proteins, Fusion, Transplantation, Heterologous, Hematopoietic Stem Cell Transplantation, Gene Expression, Mice, SCID, Hematopoietic Stem Cells, Recombinant Proteins, Mice, Mice, Inbred NOD, Primary Myelofibrosis, Transduction, Genetic, Animals, Humans, Erythropoiesis, Erythropoietin, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze