Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Methylglyoxal, a Metabolite Derived from Glycolysis, Functions as a Signal Initiator of the High Osmolarity Glycerol-Mitogen-activated Protein Kinase Cascade and Calcineurin/Crz1-mediated Pathway in Saccharomyces cerevisiae

Authors: Yoshiharu Inoue; Kazuhiro Maeta; Shingo Izawa;

Methylglyoxal, a Metabolite Derived from Glycolysis, Functions as a Signal Initiator of the High Osmolarity Glycerol-Mitogen-activated Protein Kinase Cascade and Calcineurin/Crz1-mediated Pathway in Saccharomyces cerevisiae

Abstract

Methylglyoxal (MG) is a typical 2-oxoaldehyde derived from glycolysis, although it inhibits the growth of cells in all types of organism. Hence, it has been questioned why such a toxic metabolite is synthesized via the ubiquitous energy-generating pathway. We have previously reported that expression of GLO1, coding for the major enzyme detoxifying MG, was induced by osmotic stress in a high osmolarity glycerol (HOG)-mitogen-activated protein (MAP) kinase-dependent manner in Saccharomyces cerevisiae. Here we show that MG activates the HOG-MAP kinase cascade. Two osmosensors, Sln1 and Sho1, have been identified to function upstream of the HOG-MAP kinase cascade, and we reveal that MG initiates the signal transduction to this MAP kinase cascade through the Sln1 branch. We also demonstrate that MG activates the Msn2 transcription factor. Moreover, MG activated the uptake of Ca(2+) in yeast cells, thereby stimulating the calcineurin/Crz1-mediated Ca(2+) signaling pathway. We propose that MG functions as a signal initiator in yeast.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, MAP Kinase Signaling System, Osmolar Concentration, Intracellular Signaling Peptides and Proteins, Lactoylglutathione Lyase, Membrane Proteins, Saccharomyces cerevisiae, Pyruvaldehyde, Mitogen-Activated Protein Kinases, Glycolysis, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 10%
gold