Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Plant Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Plant Research
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana

Authors: Reimo, Zoschke; Yujiao, Qu; Yan O, Zubo; Thomas, Börner; Christian, Schmitz-Linneweber;

Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana

Abstract

RNA processing, RNA editing, RNA splicing and translational activation of RNAs are essential post-transcriptional steps in chloroplast gene expression. Typically, the factors mediating those processes are nuclear encoded and post-translationally imported into the chloroplasts. In land plants, members of the large pentatricopeptide repeat (PPR) protein family are required for individual steps in chloroplast RNA processing. Interestingly, a subgroup of PPR proteins carries a C-terminal small MutS related (SMR) domain. Here we analyzed the consequences of mutations in the SVR7 gene, which encodes a PPR-SMR protein, in Arabidopsis thaliana. We demonstrate that SVR7 mutations lead to a specific reduction in chloroplast ATP synthase levels. Furthermore, we found aberrant transcript patterns for ATP synthase coding mRNAs in svr7 mutants. Finally, a reduced ribosome association of atpB/E and rbcL mRNAs in svr7 mutants suggests the involvement of the PPR-SMR protein SVR7 in translational activation of these mRNAs. We describe that the function of SVR7 in translation has expanded relative to its maize ortholog ATP4. The results provide evidence for a relaxed functional conservation of this PPR-SMR protein in eudicotyledonous and monocotyledonous plants, thus adding to the knowledge about the function and evolution of PPR-SMR proteins.

Related Organizations
Keywords

Chloroplasts, Arabidopsis Proteins, Gene Expression Regulation, Plant, Reverse Transcriptase Polymerase Chain Reaction, Immunoblotting, Mutation, Arabidopsis, Chloroplast Proton-Translocating ATPases, RNA, Messenger, Ribosomes, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%