Molecular Cell Biology and Immunobiology of Mammalian Rod/Ring Structures
pmid: 24411169
Molecular Cell Biology and Immunobiology of Mammalian Rod/Ring Structures
Nucleotide biosynthesis is a highly regulated process necessary for cell growth and replication. Cytoplasmic structures in mammalian cells, provisionally described as rods and rings (RR), were identified by human autoantibodies and recently shown to include two key enzymes of the CTP/GTP biosynthetic pathways, cytidine triphosphate synthetase (CTPS) and inosine monophosphate dehydrogenase (IMPDH). Several studies have described CTPS filaments in mammalian cells, Drosophila, yeast, and bacteria. Other studies have identified IMPDH filaments in mammalian cells. Similarities among these studies point to a common evolutionarily conserved cytoplasmic structure composed of a subset of nucleotide biosynthetic enzymes. These structures appear to be a conserved metabolic response to decreased intracellular GTP and/or CTP pools. Antibodies to RR were found to develop in some hepatitis C patients treated with interferon-α and ribavirin. Additionally, the presence of anti-RR antibodies was correlated with poor treatment outcome.
- RMIT University Australia
- University of Occupational and Environmental Health Japan Japan
- University of Florida United States
IMP Dehydrogenase, Allergy and Immunology, Animals, Cytoplasmic Structures, Humans, Carbon-Nitrogen Ligases, Cell Biology, Molecular Biology
IMP Dehydrogenase, Allergy and Immunology, Animals, Cytoplasmic Structures, Humans, Carbon-Nitrogen Ligases, Cell Biology, Molecular Biology
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
