Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Seeking an ancient enzyme in Methanococcus jannaschii using orf , a program based on predicted secondary structure comparisons

Authors: R, Aurora; G D, Rose;

Seeking an ancient enzyme in Methanococcus jannaschii using orf , a program based on predicted secondary structure comparisons

Abstract

We have developed a simple procedure to identify protein homologs in genomic databases. The program, called orf , is based on comparisons of predicted secondary structure. Protein structure is far better conserved than amino acid sequence, and structure-based methods have been effective in exploiting this fact to find homologs, even among proteins with scant sequence identity. orf is a secondary structure-based method that operates solely on predictions from sequence and requires no experimentally determined information about the structure. The approach is illustrated by an example: Thymidylate synthase, a highly conserved enzyme essential to thymidine biosynthesis in both prokaryotes and eukaryotes, is thought to be used by Archaea , but a corresponding gene has yet to be identified. Here, a candidate thymidylate synthase is identified as a previously unassigned open reading frame from the genome of Methanococcus jannaschii, viz., MJ0757. Using primary structure information alone, the optimally aligned sequence identity between MJ0757 and Escherichia coli thymidylate synthase is 7%, well below the threshold of sensitivity for detection by sequence-based methods.

Related Organizations
Keywords

Models, Molecular, Bacteria, Sequence Homology, Amino Acid, Archaeal Proteins, Methanococcus, Molecular Sequence Data, Saccharomyces cerevisiae, Thymidylate Synthase, Protein Structure, Secondary, Protein Structure, Tertiary, Evolution, Molecular, Amino Acid Sequence, Sequence Alignment, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
bronze