Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells
Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells
Dysferlin was previously identified as a key player in muscle membrane repair and its deficiency leads to the development of muscular dystrophy and cardiomyopathy. However, little is known about the oligomerization of this protein in the plasma membrane. Here we report for the first time that dysferlin forms a dimer in vitro and in living adult skeletal muscle fibers isolated from mice. Endogenous dysferlin from rabbit skeletal muscle exists primarily as a ∼460 kDa species in detergent-solubilized muscle homogenate, as shown by sucrose gradient fractionation, gel filtration and cross-linking assays. Fluorescent protein (YFP) labeled human dysferlin forms a dimer in vitro, as demonstrated by fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses. Dysferlin also dimerizes in living cells, as probed by fluorescence resonance energy transfer (FRET). Domain mapping FRET experiments showed that dysferlin dimerization is mediated by its transmembrane domain and by multiple C2 domains. However, C2A did not significantly contribute to dimerization; notably, this is the only C2 domain in dysferlin known to engage in a Ca-dependent interaction with cell membranes. Taken together, the data suggest that Ca-insensitive C2 domains mediate high affinity self-association of dysferlin in a parallel homodimer, leaving the Ca-sensitive C2A domain free to interact with membranes.
- Loyola University Medical Center United States
Cell Survival, Science, Q, Cell Membrane, Muscle Fibers, Skeletal, R, Membrane Proteins, Muscle Proteins, Protein Structure, Tertiary, Molecular Weight, Mice, HEK293 Cells, Medicine, Animals, Humans, Rabbits, Protein Multimerization, Protein Structure, Quaternary, Dysferlin, Research Article
Cell Survival, Science, Q, Cell Membrane, Muscle Fibers, Skeletal, R, Membrane Proteins, Muscle Proteins, Protein Structure, Tertiary, Molecular Weight, Mice, HEK293 Cells, Medicine, Animals, Humans, Rabbits, Protein Multimerization, Protein Structure, Quaternary, Dysferlin, Research Article
17 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
