Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses

Authors: Tezuka, Tohru; Inoue, Akane; Hoshi, Taisuke; Weatherbee, Scott D; Burgess, Robert W; Ueta, Ryo; Yamanashi, Yuji;

The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses

Abstract

Significance The neuromuscular junction (NMJ) is a synapse between the motor nerve and myotube essential for controlling skeletal muscle contraction. Motor nerve-derived glycoprotein agrin is indispensable for the formation and maintenance of NMJs, and genetic defects in agrin underlie a congenital myasthenic syndrome (CMS). Agrin’s role has been thought to be activation of the muscle-specific receptor kinase MuSK. Here, we demonstrate that forced activation of MuSK in agrin-deficient mice restored embryonic formation, but not postnatal maintenance, of NMJs, demonstrating that agrin plays an essential role distinct from MuSK activation in the postnatal maintenance of NMJs. Given that CMSs frequently show postnatal onset, this finding provides key insights not only into NMJ homeostasis but also into CMS pathology with unknown etiology.

Related Organizations
Keywords

Male, 570, Diaphragm, Longevity, Muscle Fibers, Skeletal, Neuromuscular Junction, Muscle Proteins, Mice, Transgenic, Mice, Medicine and Health Sciences, Animals, Receptors, Cholinergic, Agrin, Phosphorylation, LDL-Receptor Related Proteins, Life Sciences, Post-Synaptic Density, Receptor Protein-Tyrosine Kinases, Neuromuscular Junction Diseases, Enzyme Activation, Alternative Splicing, Female, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze