<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals

doi: 10.1038/nn1202-1265
pmid: 12447381
Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals
It is a major challenge to understand how the neuroepithelial cells of the developing CNS choose between alternative cell fates to generate cell diversity. In invertebrates such as Drosophila melanogaster and Caenorhabditis elegans, asymmetric segregation of cell-fate determining proteins or mRNAs to the two daughter cells during precursor cell division plays a crucial part in cell diversification. There is increasing evidence that this mechanism also operates in vertebrate neural development and that Numb proteins, which function as cell-fate determinants during Drosophila development, may also function in this way in vertebrates. Recent studies on mouse cortical progenitor cells have provided the strongest evidence yet that this is the case. Here, we review these and other findings that suggest an important role for the asymmetric segregation of Numb proteins in vertebrate neural development.
- University College London United Kingdom
- Stanford University United States
Central Nervous System, Mammals, Neurons, Stem Cells, Membrane Proteins, Cell Differentiation, Nerve Tissue Proteins, Animals, Humans, Cell Lineage, Drosophila, Cell Division
Central Nervous System, Mammals, Neurons, Stem Cells, Membrane Proteins, Cell Differentiation, Nerve Tissue Proteins, Animals, Humans, Cell Lineage, Drosophila, Cell Division
27 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).170 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%