Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemistry - A Europe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemistry - A European Journal
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
versions View all 3 versions

Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants

Authors: Sebastian Strobl; Karin Hofbauer; Holger Heine; Alla Zamyatina;

Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants

Abstract

AbstractTLR4 is a key pattern recognition receptor that can sense pathogen‐ and danger‐ associated molecular patterns to activate the downstream signaling pathways which results in the upregulation of transcription factors and expression of interferons and cytokines to mediate protective pro‐inflammatory responses involved in immune defense. Bacterial lipid A is the primary TLR4 ligand with very complex, species‐specific, and barely predictable structure‐activity relationships. Given that therapeutic targeting of TLR4 is an emerging tool for management of a variety of human diseases, the development of novel TLR4 activating biomolecules other than lipid A is of vast importance. We report on design, chemical synthesis and immunobiology of novel glycan‐based lipid A‐mimicking molecules that can activate human and murine TLR4‐mediated signaling with picomolar affinity. Exploiting crystal structure ‐ based design we have created novel disaccharide lipid A mimetics (DLAMs) where the inherently flexible β(1→6)‐linked diglucosamine backbone of lipid A is exchanged with a conformationally restrained non‐reducing βGlcN(1↔1′)βGlcN scaffold. Excellent stereoselectivity in a challenging β,β‐1,1′ glycosylation was achieved by tuning the reactivities of donor and acceptor molecules using protective group manipulation strategy. Divergent streamlined synthesis of β,β‐1,1′‐linked diglucosamine‐derived glycolipids entailing multiple long‐chain (R)‐3‐ acyloxyacyl residues and up two three phosphate groups was developed. Specific 3D‐molecular shape and conformational rigidity of unnatural β,β‐1,1′‐linked diglucosamine combined with carefully optimized phosphorylation and acylation pattern ensured efficient induction of the TLR4‐mediated signaling in a species‐independent manner.

Keywords

Disaccharides, Toll-Like Receptor 4, Mice, Lipid A, Adjuvants, Immunologic, Animals, Humans, Immunotherapy, Prospective Studies, Research Articles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
hybrid