Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HRČAK - Portal of Cr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transactions of FAMENA
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Experimental Study on Woven Ramie Fibre Epoxy Composite with Silane-Treated Groundnut Shell Powder as a Filler Material

Authors: S, Mahalingam; Annamalai, Suresh Babu;

Experimental Study on Woven Ramie Fibre Epoxy Composite with Silane-Treated Groundnut Shell Powder as a Filler Material

Abstract

This study focuses on the effect of using silane-treated groundnut shell powder (GSP) as a filler material in varying weight proportions (1 %, 3 %, 5 %, and 7 % wt.) in the fabrication of ramie fibre-reinforced epoxy composites. This study also deals with the mechanical, thermal, and hydrophobic properties of ramie fibre-epoxy composites. A biological waste filler made from groundnut shell (Arachis hypogaea L.), which incorporates cellulose, hemi-cellulose, and lignin, is surface-treated with silane (3-aminopropyltriethoxysilane) using the wet solution technique. Ramie fibre-epoxy composites were created using hand layup and ambient temperature curing. The highest tensile strength of a composite made with 5 wt. % GSP particles in an epoxy matrix is 171 MPa; the maximum flexural strength is 228 MPa, the Izod impact toughness is 6.7 J; and the micro-hardness is 91 Shore-D. Although the thermal stability rises as the filler loading increases, nanocomposites also show a nearly similar tendency toward thermal stability at higher loadings. The silane-treated GSP contributed to an improvement in wear resistance of the composite specimens ERG1, ERG2, ERG3, and ERG4 compared to the untreated ones. The composite specimens (ERG4) with more filler showed greater water absorption. After 45 days of immersion, the ERG4 specimens show a 17 % moisture absorption (the untreated specimen) and a 15% moisture absorption (the treated specimen).

Related Organizations
Keywords

Groundnut shell, thermal and hydrophobic properties, Epoxy composite, Mechanical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold