Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Heart and Circul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Heart and Circulatory Physiology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Basal and IGF-I-dependent regulation of potassium channels by MAP kinases and PI3-kinase during eccentric cardiac hypertrophy

Authors: Teos, Leyla; Zhao, Aiqiu; Alvin, Zikiar; Laurence, Graham G.; Li, Chuanfu; Haddad, Georges E.;

Basal and IGF-I-dependent regulation of potassium channels by MAP kinases and PI3-kinase during eccentric cardiac hypertrophy

Abstract

The potassium channels IK and IK1, responsible for the action potential repolarization and resting potential respectively, are altered during cardiac hypertrophy. The activation of insulin-like growth factor-I (IGF-I) during hypertrophy may affect channel activity. The aim was to examine the modulatory effects of IGF-I on IK and IK1 through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways during hypertrophy. With the use of specific inhibitors for ERK1/2 (PD98059), p38 MAPK (SB203580) and PI3K/Akt (LY294002), Western blot and whole cell patch-clamp were conducted on sham and aorto-caval shunt-induced hypertrophy adult rat myocytes. Basal activation levels of MAPKs and Akt were increased during hypertrophy. Acute IGF-I (10−8 M) enhanced basal activation levels of these kinases in normal hearts but only those of Akt in hypertrophied ones. IK and IK1 activities were lowered by IGF-I. Inhibition of ERK1/2, p38 MAPK, or Akt reduced basal IK activity by 70, 32, or 50%, respectively, in normal cardiomyocytes vs. 53, 34, or 52% in hypertrophied ones. However, basal activity of IK1 was reduced by 45, 48, or 45% in the former vs. 63, 43, or 24% in the latter. The inhibition of either MAPKs or Akt alleviated IGF-I effects on IK and IK1. We conclude that basal IK and IK1 are positively maintained by steady-state Akt and ERK activities. K+ channels seem to be regulated in a dichotomic manner by acutely stimulated MAPKs and Akt. Eccentric cardiac hypertrophy may be associated with a change in the regulation of the steady-state basal activities of K+ channels towards MAPKs, while that of the acute IGF-I-stimulated ones toward Akt.

Country
United States
Related Organizations
Keywords

Male, phosphatidylinositol 3-kinase, Potassium Channels, Time Factors, 610, Cardiomegaly, Membrane Potentials, Rats, Sprague-Dawley, Phosphatidylinositol 3-Kinases, Animals, insulin-like growth factor-I, Myocytes, Cardiac, Insulin-Like Growth Factor I, Phosphorylation, Protein Kinase Inhibitors, Phosphoinositide-3 Kinase Inhibitors, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, mitogen activated protein kinase, Rats, Disease Models, Animal, Mitogen-Activated Protein Kinases, Proto-Oncogene Proteins c-akt, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
bronze