Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2014
Data sources: Lirias
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages

Authors: McComb, Scott; Cessford, Erin; Alturki, Norah A.; Joseph, Julie; Shutinoski, Bojan; Startek, Justyna; Gamero, Ana M.; +2 Authors

Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages

Abstract

SignificanceAlthough it has long been known that inflammatory immune responses are associated with death of cells through necrosis, the mechanisms controlling this process are not yet well understood. Recently a type of programmed inflammatory cell death, necroptosis, has been discovered. In this paper we reveal previously unidentified molecular mechanisms that operate to induce this form of cell death. Our results indicate that in order to undergo necroptosis, immune cells must produce and receive signals from the key immune regulator, interferon. Such interferon-dependent necroptosis of immune cells drives acute inflammatory pathology in a mouse model of sepsis. This work highlights the intimate connection between cell death and inflammation, and may lead to new understanding and treatment of inflammatory pathologies.

Related Organizations
Keywords

Lipopolysaccharides, Apoptosis, Receptor, Interferon alpha-beta, Models, Biological, Mice, Necrosis, INFLAMMATION, KINASE, Animals, TOLL-LIKE RECEPTORS, PROGRAMMED NECROSIS, Inflammation, Science & Technology, SEPSIS, Tumor Necrosis Factor-alpha, INDUCTION, Macrophages, Interferon-Stimulated Gene Factor 3, gamma Subunit, Multidisciplinary Sciences, ALPHA, Enzyme Activation, Mice, Inbred C57BL, TRANSCRIPTION FACTORS, Poly I-C, CELL-DEATH, Receptor-Interacting Protein Serine-Threonine Kinases, Interferon Type I, Science & Technology - Other Topics, SHOCK, Oligopeptides, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 1%
Top 10%
Top 1%
Green
bronze