Powered by OpenAIRE graph

X-ray-induced luminescence in crystalline SiO2

Authors: P. J. Alonso; L. E. Halliburton; E. E. Kohnke; R. B. Bossoli;

X-ray-induced luminescence in crystalline SiO2

Abstract

The x-ray-induced ‘‘blue’’ emission from commercially available, high-quality synthetic quartz has been studied between 80 and 300 K. Three overlapping bands, each having a different quenching temperature, have been experimentally resolved in the as-grown crystals. These bands peak at 440, 425, and 380 nm; their half-widths are 0.64, 0.75, and 0.92 eV; and they thermally quench in the 120–160, 170–210, and 220–270 K regions, respectively. An intense electron irradiation at room temperature or an electrodiffusion (sweep) in a hydrogen atmosphere eliminates the band at 380 nm. Our results suggest that the 380-nm band arises from recombination of an electron with a hole trapped adjacent to an alkali-compensated aluminum ion (i.e., an Al–M+ center). The origins of the bands at 440 and 425 nm remain unknown. As an application of these results, a screening test is described which could assist quality control during selection of quartz bars for use in precision frequency control devices.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 1%
Top 10%