Powered by OpenAIRE graph

T280M Variation of the CX3C Receptor Gene Is Associated With Increased Risk for Severe Respiratory Syncytial Virus Bronchiolitis

Authors: Virginia, Amanatidou; George, Sourvinos; Stavros, Apostolakis; Amalia, Tsilimigaki; Demetrios A, Spandidos;

T280M Variation of the CX3C Receptor Gene Is Associated With Increased Risk for Severe Respiratory Syncytial Virus Bronchiolitis

Abstract

Recent data suggest that immunologic response during respiratory syncytial virus (RSV) infection is partially modified through interaction of viral G glycoprotein with the host's chemokine receptor, CX3CR1. We hypothesized that two nonsynonymous, single-nucleotide polymorphisms of the CX3CR1 gene (CX3CR1-V249I and CX3CR1-T280M) that disrupt the affinity of CX3CR1 for its natural ligand (fractalkine) could also affect the G glycoprotein-CX3CR1 pathway.To test the hypothesis, DNA samples were obtained from 82 children hospitalized for RSV bronchiolitis in a 1-year period. One hundred twenty sex-matched healthy adults, without a history of severe lower respiratory tract infections, formed the control group.Epidemiologic data showed an increase in the RSV infection rate during the late winter season, with a peak rate in early spring. Genotyping revealed predominance of the 280M-containing genotypes (M/M or T/M) in cases compared with controls (37.8% versus 20.8%, respectively; odds ratio, 2.03; 95% confidence interval, 1.1-3.9; P = 0.025), demonstrating an association between the common CX3CR1-T280M variations and increased risk of severe RSV bronchiolitis.Our findings support the hypothesis of the pivotal role of the G glycoprotein CX3CR1 pathway in the pathogenesis of RSV bronchiolitis and propose CX3CR1 as a potential therapeutic target.

Related Organizations
Keywords

Male, Chemokine CX3CL1, CX3C Chemokine Receptor 1, Genetic Variation, Infant, Membrane Proteins, Respiratory Syncytial Virus Infections, Polymorphism, Single Nucleotide, Severity of Illness Index, Chemokines, CX3C, Receptors, HIV, Risk Factors, Case-Control Studies, Respiratory Syncytial Virus, Human, Bronchiolitis, Viral, Humans, Female, Seasons, Receptors, Cytokine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%