Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/520775...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

SGK1.1 activation causes early seizure termination via effects on M-current

Authors: Armas-Capote, Natalia; Maglio, Laura E.; Pérez-Atencio, Leonel; Martin-Batista, Elva; Reboreda, Antonio; Barios, Juan A.; Hernandez, Guadalberto; +4 Authors

SGK1.1 activation causes early seizure termination via effects on M-current

Abstract

AbstractEarly termination of status epilepticus affords protection against brain damage and associated pathologies. Regulation of Kv7.2/7.3 potassium channels, underlying the neuronal M-current, is key for seizure control. This conductance is maintained during initiation of action potentials, affecting neuronal excitability and thus inhibiting epileptic discharges. The M-current is upregulated by the neuronal isoform of the serum and glucocorticoid-regulated kinase SGK1 (SGK1.1). We tested whether SGK1.1 is an anticonvulsant factor using the kainic acid (KA) model of acute seizures in a transgenic mouse model with expression of a constitutively active form of the kinase. Our results demonstrate that SGK1.1 confers robust protection against seizures associated to lower mortality levels, independently of sex or genetic background. SGK1.1-dependent protection results in reduced number, shorter duration, and early termination of EEG seizures. At the cellular level, it is associated to increased M-current amplitude mediated by Nedd4-2 phosphorylation, leading to decreased excitability of hippocampal CA1 neurons without alteration of basal synaptic transmission. Altogether, our results reveal that SGK1.1-mediated M-current upregulation in the hippocampus is a key component of seizure resistance in the KA epileptic paradigm, suggesting that regulation of this anticonvulsant pathway may improve adverse outcomes to status epilepticus, constituting a potential target for antiepileptic drugs.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
STARS EU