Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry
doi: 10.1242/jcs.070151
pmid: 20587595
Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry
Store-operated Ca2+ entry (SOCE) is established by formation of subplasmalemmal clusters of the endoplasmic reticulum (ER) protein, stromal interacting molecule 1 (STIM1) upon ER Ca2+ depletion. Thereby, STIM1 couples to plasma membrane channels such as Orai1. Thus, a close proximity of ER domains to the plasma membrane is a prerequisite for SOCE activation, challenging the concept of local Ca2+ buffering by mitochondria as being essential for SOCE. This study assesses the impact of mitochondrial Ca2+ handling and motility on STIM1–Orai1-dependent SOCE. High-resolution microscopy showed only 10% of subplasmalemmal STIM1 clusters to be colocalized with mitochondria. Impairments of mitochondrial Ca2+ handling by inhibition of mitochondrial Na+-Ca2+ exchanger (NCXmito) or depolarization only partially suppressed Ca2+ entry in cells overexpressing STIM1-Orai1. However, SOCE was completely abolished when both NCXmito was inhibited and the inner mitochondrial membrane was depolarized, in STIM1- and Orai1-overexpressing cells. Immobilization of mitochondria by expression of mAKAP-RFP-CAAX, a construct that physically links mitochondria to the plasma membrane, affected the Ca2+ handling of the organelles but not the activity of SOCE. Our observations indicate that mitochondrial Ca2+ uptake, including reversal of NCXmito, is fundamental for STIM1–Orai1-dependent SOCE, whereas the proximity of mitochondria to STIM1-Orai1 SOCE units and their motility is not required.
- Medical University of Graz Austria
- Medical University of Graz Austria
Microscopy, Confocal, ORAI1 Protein, Reverse Transcriptase Polymerase Chain Reaction, Membrane Proteins, Cell Line, Mitochondria, Neoplasm Proteins, Humans, Calcium, Calcium Channels, Stromal Interaction Molecule 1
Microscopy, Confocal, ORAI1 Protein, Reverse Transcriptase Polymerase Chain Reaction, Membrane Proteins, Cell Line, Mitochondria, Neoplasm Proteins, Humans, Calcium, Calcium Channels, Stromal Interaction Molecule 1
5 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).79 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
