Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission
Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission
Mitochondrial fission is important for organelle transport, inheritance, and turnover, and alterations in fission are seen in neurological disease. In mammals, mitochondrial fission is executed by dynamin-related protein 1 (Drp1), a cytosolic guanosine triphosphatase that polymerizes and constricts the organelle. Recruitment of Drp1 to mitochondria involves receptors including Mff, MiD49, and MiD51. MiD49/51 form foci at mitochondrial constriction sites and coassemble with Drp1 to drive fission. Here, we solved the crystal structure of the cytosolic domain of human MiD51, which adopts a nucleotidyltransferase fold. Although MiD51 lacks catalytic residues for transferase activity, it specifically binds guanosine diphosphate and adenosine diphosphate. MiD51 mutants unable to bind nucleotides were still able to recruit Drp1. Disruption of an additional region in MiD51 that is not part of the nucleotidyltransferase fold blocked Drp1 recruitment and assembly of MiD51 into foci. MiD51 foci are also dependent on the presence of Drp1, and after scission they are distributed to daughter organelles, supporting the involvement of MiD51 in the fission apparatus.
- JOHNS HOPKINS UNIVERSITY
- University of Melbourne Australia
- Johns Hopkins University School of Medicine United States
- La Trobe University Australia
- Johns Hopkins University Sch of Medicine United States
Dynamins, 060110 Receptors and Membrane Biology, Blotting, Western, Fluorescent Antibody Technique, Crystallography, X-Ray, Guanosine Diphosphate, Mitochondrial Dynamics, Mitochondrial Proteins, Mice, Animals, Humans, Research Articles, Cells, Cultured, Mice, Knockout, Fibroblasts, 540, Embryo, Mammalian, Peptide Elongation Factors, Adenosine Diphosphate, Crystallization, HeLa Cells
Dynamins, 060110 Receptors and Membrane Biology, Blotting, Western, Fluorescent Antibody Technique, Crystallography, X-Ray, Guanosine Diphosphate, Mitochondrial Dynamics, Mitochondrial Proteins, Mice, Animals, Humans, Research Articles, Cells, Cultured, Mice, Knockout, Fibroblasts, 540, Embryo, Mammalian, Peptide Elongation Factors, Adenosine Diphosphate, Crystallization, HeLa Cells
14 Research products, page 1 of 2
- 2017IsRelatedTo
- 2013IsRelatedTo
- 2013IsSupplementTo
- 2017IsRelatedTo
- 2013IsRelatedTo
- 2013IsSupplementTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).93 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
