Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2006 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2006
License: CC BY NC ND
Molecular Cell
Article . 2006
versions View all 3 versions

Intergenic Transcripts Regulate the Epigenetic State of rRNA Genes

Authors: Ingrid Grummt; Kerstin Maike Schmitz; Junwei Li; Christine Mayer; Raffaella Santoro;

Intergenic Transcripts Regulate the Epigenetic State of rRNA Genes

Abstract

Transcripts originating from the intergenic spacer (IGS) that separates rRNA genes (rDNA) have been known for two decades; their biological role, however, is largely unknown. Here we show that IGS transcripts are required for establishing and maintaining a specific heterochromatic configuration at the promoter of a subset of rDNA arrays. The mechanism of action appears to be mediated through the interaction of TIP5, the large subunit of the chromatin remodeling complex NoRC, with 150-300 nucleotide RNAs that are complementary in sequence to the rDNA promoter. Mutations that abrogate RNA binding of TIP5 impair the association of NoRC with rDNA and fail to promote H3K9&H4K20 methylation and HP1 recruitment. Knockdown of IGS transcripts abolishes the nucleolar localization of NoRC, decreases DNA methylation, and enhances rDNA transcription. The results reveal an important contribution of processed IGS transcripts in chromatin structure and epigenetic control of the rDNA locus.

Related Organizations
Keywords

Transcription, Genetic, Chromosomal Proteins, Non-Histone, Molecular Sequence Data, Cell Biology, Chromatin Assembly and Disassembly, DNA, Ribosomal, Epigenesis, Genetic, Mice, Gene Expression Regulation, RNA, Ribosomal, Heterochromatin, NIH 3T3 Cells, Animals, DNA, Intergenic, RNA, Messenger, Molecular Biology, Cell Nucleolus, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    302
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
302
Top 1%
Top 1%
Top 1%
hybrid