Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Journal
Article . 1995 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid

Authors: Labrecque, J.; Dumas, F.; Lacroix, A.; Bhat, P. V.;

A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid

Abstract

The pleiotropic effects of retinoids are mediated by two families of nuclear receptors: RAR (retinoic acid receptors) and RXR (retinoid X receptors). 9-cis-Retinoic acid is a specific ligand for RXR receptors, whereas either 9-cis- or all-trans-retinoic acid activates the RAR receptor family. The existence of RXRs suggests a new role for isomerization in the biology of retinoic acid. We report here the identification of an aldehyde dehydrogenase in the rat kidney that catalysed the oxidation of 9-cis- and all-trans-retinal to corresponding retinoic acids with high efficiency, 9-cis-retinal being 2-fold more active than all-trans-retinal. Based on several criteria, such as amino acid sequence, pH optimum, and inhibition by chloral hydrate, this enzyme was found to be a novel isoenzyme of aldehyde dehydrogenase. 9-cis-Retinol, the precursor for the biosynthesis of 9-cis-retinal was identified in the rat kidney. The occurrence of endogenous 9-cis-retinol and the existence of specific dehydrogenase which participates in the catalysis of 9-cis-retinal suggest that all-trans-retinoi(d) isomerization to 9-cis-retinoi(d) occurs at the retinol level, analogous to all-trans-retinol isomerization to 11-cis-retinol in the visual cycle.

Country
Canada
Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Tretinoin, Aldehyde Dehydrogenase, Kidney, Peptide Fragments, Rats, Substrate Specificity, Isoenzymes, Rats, Sprague-Dawley, Isomerism, Retinaldehyde, pharmaceutical, Animals, Amino Acid Sequence, Diterpenes, Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 10%
Top 10%
Top 10%
bronze