Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Peptidesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Peptides
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Gamma-melanocyte stimulating hormone regulates the expression and cellular localization of epithelial sodium channel in inner medullary collecting duct cells

Authors: Georgina, Cope; Gaurav, Kaushik; Siobhan M, O'Sullivan; Vincent, Healy;

Gamma-melanocyte stimulating hormone regulates the expression and cellular localization of epithelial sodium channel in inner medullary collecting duct cells

Abstract

Gamma(2)-melanocyte-stimulating hormone (γ2MSH) is a peptide hormone released by the pituitary gland which is thought to act directly on the renal inner medulla to promote increased sodium excretion into urine (natriuresis). The aim of this study was to determine if a stable analog, [Nle(3), D-Phe(6)]-γ2MSH (NDP-γ2MSH), of the native peptide regulated the activity, expression and cellular localization of epithelial sodium channel (ENaC) in a murine inner medullary collecting duct (mIMCD-3) cell line. Our results indicate that expression of the γ2MSH receptor, melanocortin receptor 3 receptor (MC3R), is up-regulated by culturing the cells in media with an increased osmolality (∼400mOsm/kg). Furthermore, stimulation of cAMP signaling and sodium transport by 1nM NDP-γ2MSH occurs only in cells cultured in the high osmolality media. Finally, treatment of mIMCD-3 cells cultured in high osmolality medium for 1h with 1nM NDP-γ2MSH causes a reduction in expression of serum- and glucocorticoid-induced kinase (sgk1) and a reduction in expression and cell surface abundance of the alpha subunit of ENaC. Collectively, this data suggest that γ2MSH directly regulates both ENaC expression and cellular localization in the inner medulla to exert its natriuretic effect.

Related Organizations
Keywords

Ion Transport, Osmolar Concentration, Sodium, Natriuresis, Epithelial Cells, Protein Serine-Threonine Kinases, Cell Line, Culture Media, Immediate-Early Proteins, Mice, gamma-MSH, Gene Expression Regulation, alpha-MSH, Cyclic AMP, Animals, Kidney Tubules, Collecting, Epithelial Sodium Channels, Receptor, Melanocortin, Type 3, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average