Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Methodsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Methods
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Methods
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Methods
Article . 2011
versions View all 2 versions

DNA methylation profiling using the methylated-CpG island recovery assay (MIRA)

Authors: Tibor A, Rauch; Gerd P, Pfeifer;

DNA methylation profiling using the methylated-CpG island recovery assay (MIRA)

Abstract

The methylated-CpG island recovery assay (MIRA) exploits the intrinsic specificity and the high affinity of a methylated-CpG-binding protein complex (MBD2B and MBD3L1) to methylated CpG dinucleotides in genomic DNA. The MIRA approach works on double-stranded DNA and does not depend on the application of methylation-sensitive restriction enzymes. It can be performed on a few hundred nanograms of genomic DNA. Recently, the MIRA technique has been used to profile DNA methylation patterns at a resolution of 100 base pairs along the entire genome of normal human B-lymphocytes. The MIRA method is compatible with microarray and next generation DNA sequencing approaches. We describe the principles and details of this method applied for methylation profiling of genomes containing methylated CpG sequences.

Keywords

DNA-Binding Proteins, Genetic Techniques, Humans, CpG Islands, DNA, DNA Methylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze