Global Assessment of Regulation of Phosphorylation of Insulin Receptor Substrate-1 by Insulin In Vivo in Human Muscle
doi: 10.2337/db06-1355
pmid: 17360977
Global Assessment of Regulation of Phosphorylation of Insulin Receptor Substrate-1 by Insulin In Vivo in Human Muscle
OBJECTIVE—Research has focused on insulin receptor substrate (IRS)-1 as a locus for insulin resistance. Tyrosine phosphorylation of IRS-1 initiates insulin signaling, whereas serine/threonine phosphorylation alters the ability of IRS-1 to transduce the insulin signal. Of 1,242 amino acids in IRS-1, 242 are serine/threonine. Serine/threonine phosphorylation of IRS-1 is affected by many factors, including insulin. The purpose of this study was to perform global assessment of phosphorylation of serine/threonine residues in IRS-1 in vivo in humans. RESEARCH DESIGN AND METHODS—In this study, we describe our use of capillary high-performance liquid chromotography electrospray tandem mass spectrometry to identify/quantify site-specific phosphorylation of IRS-1 in human vastus lateralis muscle obtained by needle biopsy basally and after insulin infusion in four healthy volunteers. RESULTS—Twenty-two serine/threonine phosphorylation sites were identified; 15 were quantified. Three sites had not been previously identified (Thr495, Ser527, and S1005). Insulin increased the phosphorylation of Ser312, Ser616, Ser636, Ser892, Ser1101, and Ser1223 (2.6 ± 0.4, 2.9 ± 0.8, 2.1 ± 0.3, 1.6 ± 0.1, 1.3 ± 0.1, and 1.3 ± 0.1–fold, respectively, compared with basal; P < 0.05); phosphorylation of Ser348, Thr446, Thr495, and Ser1005 decreased (0.4 ± 0.1, 0.2 ± 0.1, 0.1 ± 0.1, and 0.3 ± 0.2–fold, respectively; P < 0.05). CONCLUSIONS—These results provide an assessment of IRS-1 phosphorylation in vivo and show that insulin has profound effects on IRS-1 serine/threonine phosphorylation in healthy humans.
- The University of Texas Health Science Center at Houston United States
- The University of Texas System United States
- The University of Texas Health Science Center at San Antonio United States
- Arizona State University United States
Adult, Blood Glucose, Male, Biopsy, Glucose Tolerance Test, Phosphoproteins, Kinetics, Phosphoserine, Phosphothreonine, Reference Values, Glucose Clamp Technique, Insulin Receptor Substrate Proteins, Homeostasis, Humans, Insulin, Female, Phosphorylation, Muscle, Skeletal
Adult, Blood Glucose, Male, Biopsy, Glucose Tolerance Test, Phosphoproteins, Kinetics, Phosphoserine, Phosphothreonine, Reference Values, Glucose Clamp Technique, Insulin Receptor Substrate Proteins, Homeostasis, Humans, Insulin, Female, Phosphorylation, Muscle, Skeletal
8 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
